Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol Biochem ; 72(4): 699-710, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27474043

RESUMO

Omega-3 fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. Dietary depletion of omega-3 fatty acids is associated with pancreatic islet dysfunction and insulin resistance in rats. Herein, the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on pancreatic beta cell redox state and function were investigated. INS-1E insulin-secreting cells were incubated with EPA and DHA in combination with palmitic acid, and productions of reactive oxygen species (ROS), nitric oxide (NO) and insulin were measured. The involvement of the NADPH oxidase complex in ROS production and expression of the antioxidant enzymes was also investigated. After incubation for 1 or 48 h, productions of superoxide (by hydroethidine method), nitric oxide (by 4,5-diaminofluorescein diacetate-DAF-2DA assay), insulin (by radioimmunoassay), and expressions (by western blot analysis) of glutathione peroxidase (GPx-1) and gp91PHOX were measured. EPA and DHA reduced superoxide production after 1-h incubation. After 48 h, palmitic acid reduced superoxide production that was normalized by EPA treatment. Palmitic acid increased NO production that was reverted by EPA and DHA. Palmitic acid increased insulin secretion after 48 h, whereas both omega-3 fatty acids increased intracellular insulin content. EPA and DHA enhanced GPx-1 expression as well as gp91PHOX glycosylated form. In conclusion, EPA and DHA increased intracellular insulin content and antioxidant enzymatic defense capacity and decreased pro-oxidant generating activities that are associated with maintenance of pancreatic beta cell redox state in response to palmitic acid.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/biossíntese , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Insulina/agonistas , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/antagonistas & inibidores , Ácido Palmítico/antagonistas & inibidores , Ácido Palmítico/farmacologia , Ratos , Transdução de Sinais , Superóxidos/antagonistas & inibidores , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...